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Abstract--This paper presents the first results of a benchmark problem concerning the simulation of coupled natural convection 
and melting from an isothermal vertical wall. The exercise is restricted to the simulation of phase change of pure substances, 
driven by laminar natural convection in 2D enclosures. The comparison covers two ranges of Prandtl numbers, corresponding to 
the melting of metals or organic materials. The results of the test cases are presented in detail and show that, while qualitative 
agreement is obtained in most situations, it is still relevant to proceed to thorough numerical comparisons before assessing the 
accuracy of the different algorithms. The dispersion of the results is a strong motivation to extend the exercise to a second stage 
incorporating a larger number of contributions. ~) Elsevier, Paris 

phase change / natural convection / moving boundaries / conjugate heat transfer / benchmark 

R~sum~ - -  Fusion contr616e par convection naturelle. Un exercice de comparaison : premiers r~sultats. Cet article pr~sente 
les premiers r~sultats d'un banc d'essais num~rique consacr~ ~ la simulation de la fusion coupl~e ~. la convection naturelle le 
long d'une paroi verticale isotherme. L'exercice est limit~ au cas des substances pures et de la convection laminaire en cavit~ 
bidimensionnelle. La comparaison porte sur deux domaines de nombres de Prandtl, correspondant ~. des mat~riaux m6talliques ou 
organiques. Les r~sultats des tests sont d~taill~s et montrent que, si on parvient ~, un accord qualitatif dans la plupart des cas, il 
reste pertinent de proc~der ~ des comparaisons rigoureuses avant d'~tablir la precision des cliff, rents algorithmes. La dispersion 
des r~sultats conduit fi proposer une seconde ~tape ~ cette comparaison et .~ I'~tendre fi un plus grand nombre de contributions. 
~) Elsevier, Paris 

changement de phase / convection naturelle / fronti~re mobile / transferts couples / banc d'essai 

Nomenclature 

A aspect ratio of the enclosure, = H / L  
C p  specific heat of the liquid phase . . . . . .  

F o  Fourier number ,  ---- a t* /H 2 

g acceleration of gravity . . . . . . . . . . . . . . .  

Gr  Grashof  number ,  = g j3 A T  H3/v  2 

H height of the enclosure . . . . . . . . . . . . . . .  m 

J . k g - l . K - 1  fc unit  vector in the vertical direction 

k thermal  conductivity of the liquid . . . .  W . m - I . K  -1 

m.s -2  L width of the enclosure . . . . . . . . . . . . . . .  m 

LF latent heat . . . . . . . . . . . . . . . . . . . . . . . . .  J . k g -  1 

N u  average Nusselt number  1 This  synthesis was wri t ten  by D. Gobin and P. Le Qu6r6. 
* Correspondance et tir6s h part .  
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P 
P r  
Ra  
S te  
t* 

T 
Ts  
To 
T1 

~(~) 
x(~) 

Greek 

C[ 

z 

A T  

dimensionless pressure 
Prandtl number, = v / a  
Rayleigh number, = P r  Gr 
Stefan number, = C p ( T1 - TF )/L F 
dimensional time . . . . . . . . . . . . . . . . . . . .  s 
dimensional temperature . . . . . . . . . . . . .  °C 
melting temperature . . . . . . . . . . . . . . . . .  °C 
initial temperature . . . . . . . . . . . . . . . . . .  °C 
hot wall temperature . . . . . . . . . . . . . . . .  °C 

dimensionless fluid velocity, = ~ H/u 

vertical (horizontal) component of 
dimensionless coordinates, = x*/H (z*/H) 

symbols 

thermal diffusivity . . . . . . . . . . . . . . . . . .  m 2-s- 1 
coefficient of volumetric thermal expan- 
sion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  o C-  1 
temperature difference between walls, 
T1 - TF . . . . . . . . . . . . . . . . . . . . . . . . . . . .  °C 
kinematic viscosity . . . . . . . . . . . . . . . . . .  m2.s -1 
fluid density . . . . . . . . . . . . . . . . . . . . . . . .  kg.m -3 
dimensionless time, = F o x  Ste  
dimensionless temperature, 
= (T  - T o ) / A T  

1. INTRODUCTION 

Solid liquid phase changes occur in many industrial 
or natura l  processes and their understanding, modeli- 
sation and numerical simulation has thus motivated a 
large number  of analytical, experimental and numeri- 
cal studies over the last 30 years. Nowadays, due to 
the increasing need for reliable numerical simulations 
of industrial  or technological processes, and as a re- 
sult of increasing computat ional  capabilities, more and 
more complex problems are being tackled in various 
research areas, accounting for the interaction between 
phase change and fluid flow, heat and species trans- 
fer in mult icomponent systems, and solidification mod- 
els including columnar 'mushy'  zones and transport  of 
equiaxed grains [1, 2]. 

In this context, our interest is to propose a nume- 
rical exercise comparing different physical models and 
numerical procedures on a relatively simpler problem, 
where phase change (here melting) is driven by laminar 
thermal convection in the melt. A large number of 
papers related to this problem may be found in the 
litterature, but  few studies have been dedicated to 
a systematical comparison of independent numerical 
algorithms. First a t tempts  are due to Lacroix and Voller 
[3] and t h i n  to Viswanath and Jaluria [4]: in both cases 
the purpose of the exercise is to compare a front- 
tracking or transformed grid procedure to a fixed grid 
or enthalpy method (see also the review by Voller [5]). 
The test problem refers essentially to the experimental 
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situation presented by Gau and Viskanta [6] for the 
melting of gallium: only the low P r  number  range 
characterising liquid metals ( P r  ~ 10 -2) is studied. 

On the other hand, comparisons of numerical compu- 
tations with experimental results have been reported in 
the l i t terature [7-11]. Although global qualitative agree- 
ment is generally found, detailed quanti tat ive compar- 
isons have been generally in conclusive due to the fact 
that  many difficulties are met when trying to satisfy ex- 
perimentally a number of hypotheses or approximations 
accepted by the numerical codes. Adiabatic horizontal 
walls, instantaneous temperature increase at the hot 
wall, or negligible density differences between the solid 
and liquid phase are rarely obtained in the experiments. 
Significant differences may even be found between in- 
dependent experiments, depending on the measurement 
techniques used to scan the melting front position, as 
shown by Campbell and Koster [12]. 

It is thus still out of reach to provide reference exper- 
iments which could be used for the purpose of assessing 
the validity of numerical simulation procedures. The 
present comparison exercise is thus intended to provide 
a common framework and sets of results in order to 
analyse in detail the characteristics of the numerical 
solutions in 2D natural  convection dominated melting 
processes, over a wide range of governing parameters. 
This presentation is a first synthesis based on a small 
number of contributions, with the intention of assessing 
the relevance of the exercise. A second, more inclusive 
step in this comparison is to be organized in the next 
few months and the present conclusions are obviously 
provisional. 

2. DESCRIPTION 

2.1. Problem Definit ion 

The problem under consideration deals with melting 
of a pure substance controlled by natural  convection in 
the melt. One considers a 2D square cavity (height H = 
width L) initially filled with a solid material at a uniform 
temperature (To = TF). At t* = 0, the temperature of 
one of the vertical walls (the left wall in figure 1) is 
raised to a value T1 > TF, while the other vertical wall 
is maintained at the initial temperature.  The horizontal 
walls are assumed to be adiabatic and no-slip. The fluid 
flow is supposed to be in the laminar regime, and the 
thermophysical properties of the material constant. 

After a pure conduction stage, thermal convection 
develops in the liquid phase, causing a non-uniform 
distribution of the heat flux at the interface and a 
non-uniform displacement of the melting front. 

2.2. Proposed test cases 

The problem is characterised by the Prandt l  and 
Rayleigh numbers, the Stefan number and the global 
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Figure 1. Schematic diagram of the problem. 
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Figure 2. Correlations for the average Nusselt number 
evolution, a) Nusselt number at the vertical wall: P r  = 0.02, 
Ste = 0.01 (equation (2)). b) Nusselt number at the vertical 
wall: P r  = 50, Ste = 0.1 (equation (1)). 

aspect  rat io of the enclosure. Two groups of numerical 
tests have been proposed, corresponding to dist inct  
ranges of the liquid phase P rand t l  number: the low 
Prand t l  number range ( P r  ~ 10 -2,  melting of metals) 
and the high Prand t l  number  range ( P r  ,,~ 102, melting 
of paraffin waxes). 

The governing parameters  have been es t imated us- 
ing approximate  values of the thermophysical  propert ies  
of t in and octadecane (table I). For a given geometry 
(A = 1), the values of the Rayleigh and Stefan num- 
bers correspond to a dimensional height of the enclo- 
sure H = 0.10 m and a reference tempera ture  difference 
T] - TF = 3 °C for t in (Case 2) and 10 °C for octade- 
cane (Case 4), leading to the values displayed in table II. 
In each P r  range, a 10 t imes smaller Rayleigh nuinber 
(Cases 1 and 3) is also considered. 

In order to limit the outputs ,  the following results 
are specified: 

(1) the t ime evolution of the melted volume and of 
the average Nusselt number  at  the hot wall; 

TABLE I 
Thermophysical properties considered 

in the definition of the test cases. 

Property Low Prandtl High Prandtl 
or number number 
parameter (Tin) (Octadecane) 

k (W-mK -1) 60 0.2 
C p  (J.kg.K - ] )  200 1 250 
p (kg.m -a)  7 500 800 

a (m2.s -1) 4.10 -5 2-10 -7 
(m2.s - ] )  8.10 -7 10 -5 

P r  0.02 50 

LF (J-kg -1) 6-104 1.25'105 
TF (°C)  232 30 
AT (°C)  3 10 

S t e  0.01 0.1 

/~ (K -1) 8/3.10 -4 2.10 -3 
H = L (m) 0.10 0.10 
g (m.s -2) 10 10 

Gr 1.25.107 2.106 
R a  2.5.105 10 s 

TABLE II 
Test cases: parameters. 

P r  = 0.02 R a  = 2.5.104 R a  = 2.5-105 
S t e  = 0.01 Case 1 Case 2 

P r  = 50 R a  = 107 R a  = lO s 
S t e  = 0.1 Case 3 Case 4 

a 

C 
I f  

W IIIIIm 

L _  

O 

ii ~ 



O. Bertrand et al. 

(2) the posit ion of the melting front and the 
local Nusselt number dis t r ibut ion at four differ- 
ent t imes (expressed in the dimensionless form 
T = Fo  S t e  = c~ t* Ste/HU: 

at P r  = 0.02: t~ = 4.10 -3, t2 = 10 -2, ta = 4.10 -2 
and t4 = 10 1, 

- at P r  = 50: t l  = 5.10 -4, t2 = 2.10 -3, t3 = 6.10 .3 
and t4 = 10 -2. 

3. HEAT TRANSFER CORRELATIONS 

Early  studies concerning the characterist ic  scales 
of the problem have been performed by Webb and 
Viskanta  [13] and Beckermann and Viskanta  [14]. A 
more complete description of the problem and an 
analysis of the relevant parameters  and of the scaling 
laws may be found in the paper  by Jany and Bejan [15]. 
The main features are described in this section. 

In the  first stage of the melting process, pure 
conduction is the dominat ing heat  transfer mechanism. 
The interface moves parallel  to the hot wall, and the 
t ime evolution of the front posit ion is given by the 
classical solution of the Stefan problem (s(t) ~ v~ [16]). 
Accordingly the  Nusselt number  decreases like 1/v/t. 
Then, as the thickness of the  liquid layer grows with 
time, the influence of convection on heat  transfer is 
felt in the top par t  of the enclosure and progressively 
along the whole interface. In this t ransi t ion regime, 
the compet i t ion between pure conduction and natura l  
convection limits the Nusselt number decrease, which 
goes through a minimum,, and then increases when 
the heat  transfer  regime is dominated  by convection. 
Final ly  the  boundary  layers in the liquid separate,  and 
the average heat  transfer reaches a constant  value. 

This  analysis was carried out in the high P r  number 
range, and Jany and Bejan [15] show tha t  the different 
t ime scales and heat  transfer rates are readily expressed 
in terms of power laws of the Rayleigh number.  The 
same approach may be extended to the range of low 
P r  numbers,  where the relevant governing paramete r  is 
shown to be the dimensionless group Ra  x Pr .  

The scaling laws lead to correlations for the evolution 
of the average Nusselt number  as a function of t ime 
(r  = F o  Ste);  the value of the coefficients are identified 
from the results of numerical  simulations. 

1) In the range P r  >_ 1: 

1 Nuo¢ - 1 / v / 2 ~  

NU(T) = ~ T T  "4- i 1 (1) 

1 + (0.0175 Ra3/4 T3/2) 2 

8 

2) In the range P r  < <  1: 

N u ( . )  = + i - 

1 + ( (Ra  Pr)°a6T°75)  2 - 

(2) 
given by the expressions Where  N u ~  is 

N u ~  = 0.33 Ra  °25 in the P r  > >  1 range according to 
Bdnard et al. [7], and N u ~  = 0 .29Ra° '2~Pr  °'is in the 
P r  < <  1 range [10], or by the more general correlation 
proposed by Lira and Bejan [17] for any value of Pr: 

0.35 Ra 1/4 

N u ~  [1 + (O.143/P'r)9/16] 4/9 " (3) 

4. PRESENTATION OF THE RESULTS 

Contribut ions to this first stage of the benchmark 
have been requested within the framework of a project  
shaved among a network of French research laboratories  
concerned with the simulation of heat and mass transfer 
processes (Ameth).  The par t ic ipants  are listed in 
table III. Brief descriptions of tile different methods 
and numerical procedures used for the solution of the 
problem are given in the appendix.  

In the following sections, the results are compared 
in figures 3 to 10. For each case, three outputs  are 
displayed and compared: 

(1) the t ime evolution of the average Nusselt number  
at the hot wall obta ined by the contributors,  compared 
to the Neumann solution and to the existing correlat ion 
recalled in section 3; 

TABLE Ill 
Contributions to the present benchmark. 

Author Laboratory 

M. Laeroix Thermaus-Sherbrooke 
G. Vieira Fast-Orsay 
D. Gobin 

B. Binet 
M. Lacroix 
M. Mddale 

Thermaus-Sherbrooke 

Iusti Marseille 
Master-Bordeaux 

EPM/Madylam Grenoble 
LET Poitiers 

LFDT Ljubljana 

LSGMM-Nancy 
LIMSI-Orsay 

O. Bertrand 
E. Arquis 
Y. Delannoy 
S. Cousturier 
H. Sadat 
J. Mencinger 
B. Sarler 
H. Combeau 
P. Le Qudrd 

C&s 

12-3-4  
2 3 - 4  

1 2 3 - 4  

2 
2 

3-4 
12 -3  

1 2  

1-2 
1-2-3-4 
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Figure 3. Comparison of  the average values for case 1. 
P r  = 0.02, S te  = 0.01, R a  = 2.5.104 . a) Nusselt number 
at the vertical wall. b) Liquid fraction. 

(2) the time evolution of the liquid fraction (the 
dimensionless melted volume); 

(3) the position of the melting front at four different 
times of the process. 

Among the 10 sets of results received, most contribu- 
tions have used fixed grid or 'enthalpy' methods (FG), 
including a commercial software package (FluentWM: 
Delannoy) and two have used a front-tracking of the 
transformed grid procedure (TG). Six contributions 
have presented results for cases ~1 and ~3, eight for 
case ~2 and five for case #4. Only three contributors 
have solved the four problems. 

5. A N A L Y S I S  OF T H E  RESULTS 

Hereafter, the comparison is made separately in the 
two ranges of Pr number. 

5.1. T h e  l o w  Prandt l  n u m b e r  r a n g e  
(cases # 1 a n d  # 2 )  

Case # I was carried out by six participants, Lacroix, 
Binet-Lacroix, Mencinger, Couturier-Sadat, Combeau 
and Le Qu~r~. For this test case, all six simulations 
are in good agreement. No significant difference was 
noted for the Nusselt number, except for the solution by 
Binet (figure 3), which gives a slightly slower evolution 
of the melting front (about 4 %). On the melting front 
positions (figure 4) however, the solution by Combeau 
seems to be slightly slower that the average. As a 
general remark, the discrepancies between the different 
solutions are small (see figure 11), which is obviously 
due to the fact that at such a low Ra number, the 
convective transfer is very limited, and the evolution is 
very close to the pure conduction solution. In figure 3, 
the plot of the Neumann solution cannot be clearly 
distinguished from the computational results. 

Case ~ 2 was carried out by eight participants, 
Lacroix, Gobin-Viera, Bertrand-Arquis, Binet Lacroix, 
Mencinger, Couturier-Sadat, Combeau and Le Qu~r~ 2. 
In the test case, in spite of the relative uniformity 
of the results in terms of the average values (-4-5 % 
on the melted volume), the differences are more 
important regarding the local interface position. The 
positions at early times (tl and t2) are almost uniformly 
identical, but at time ta, significant differences may 
be noticed all along the interface, even in the bottom 
part of the enclosure. Also the position of the 'knee' 
corresponding to the main recirculation largely varies, 
typically presenting the same dispersion as the results 
reported in [4]. 

In the interface positions displayed at time t3, two 
methods (Le Qu~r~ and CouturiewSadat) predict a 
quite different shape of the front, with a significantly 
larger interface velocity at mid-height of the enclosure. 
This is probably due to the fact that these two methods 
used a full transient procedure with small time steps 
which results in the prediction of two recirculating cells 
at this time of the evolution. As a consequence, the local 
heat transfer at the interface, and thus the local front 
velocity are modified. Actually the flow structure evolu- 
tion given by this solution is even more complex, since 
a four cell structure is found at early times, evolving 
towards 3 and then 2 rolls after successive merging of 
the two upper cells. Also note on the enlargement of the 
Nusselt number (figure 12) that the flow structure pre- 
dicted by Le Qu~r~ is oscillatory, with high frequency 
oscillations developing on top of the slow time-scale 
evolution characteristic of the melting process. The ap- 
pearance of multiple cell solutions found by Le Qu~r~ 
and Couturier-Sadat is qualitatively consistent with the 
calculations by Dantzig [18] who also reported multiple 

2 Couturier-Sadat and Le Qu~r~ carried out the simulation 
to t3 only. 
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cells using a finite-element discretisation. These findings 
are ra ther  original in the field of convective melt ing of 
metals,  where most previous numerical  studies accept 
the assumption of quasi-s teady flow. Note however tha t  
this behaviour  has not  been repor ted in the relevant 
exper imental  studies. 

5.2.  T h e  h i g h  P r a n d t l  n u m b e r  r a n g e  
( c a s e s  # 3 a n d  # 4 )  

Case # 3 was addressed by six part ic ipants ,  Lacroix, 
Gobin-Viera ,  Binet-Lacroix ,  Delannoy, C o u t u r i e ~  
Sadat ,  and Le Qu~r~ and case # 4 by five par t ic ipants ,  
Lacroix, Gobin-Viera ,  Binet Lacroix, Delannoy and Le 
Qu~r~. In the high P r  number range, the discrepancies 
between the numerical  results are more impor tant .  At 
Ra = 107, if one excepts the solution obtained by De- 
lannoy, which has probably  to be run on a finer grid, the 
results for the  melted fraction at  t ime t4 are spread over 
a ±18 % range. The differences on the melted fraction 
are mainly due to the  front posit ion in the upper  par t  
of the enclosure, since the agreement is still fairly good 
on the bo t tom half of the cavity. 

At  Ra = l0 s, again the solution by Delannoy seems to 
be unsufficiently convergent, and the enthalpy method  
developed by Binet -Lacroix  overestimates the average 
Nusselt number  by more than  30 %. Discarding these 
solutions, there is still a ±10 % dispersion on the 
melted fraction at t ime t4 for the three other  methods.  
Examinat ion  of the  melting front posit ions at  t imes t3 
and t4 shows tha t  these three methods are in qual i tat ive 
agreement for the overall shape of the  interface, and 
tha t  the results agree fairly well in the bo t t om half of 
the cavity, while the main differences at  the top of the 
interface are within a ±20 % range. 

6.  C O N C L U S I O N  

A necessary general remark concerning the present 
exercise is tha t  the choice of the problem itself (fusion 
of a pure substance) is such tha t  the front-tracking 
methods  are be t te r  adapted  to the  problem than  the 
fixed grid procedures. The front-tracking methods  would 
however fail to simulate s i tuat ions where the t ransi t ion 
from the liquid to the solid phase is not  a macroscopic 
surface, and enthalpy methods are to be used in most 
solidification problems where a sol id-l iquid interfacial 
region is present between both phases. This problem is 
not in the scope of the present exercise, which is the  
simplest  tha t  one can think of in this general context 
and which has been designed to limit the number  of 
parameters  to the mainly relevant ones. 

As a conclusion to this first stage of the  comparison 
exercise, it may be said tha t  the convergence and 
accuracy of the  methods  have to be assessed in more 
detail .  I t  would of course be of major  interest to 

produce reference solutions for these test cases, and 
more par t icular ly  for case # 4, since case # 2 seems 
to give rise to unexpected instabil i ty and uns teady 
phenomena for which a reference solution is probably  
out of reach for some time. By reference solution we 
mean a solution for which different quanti t ies and in 
par t icular  the shape of the interface is known at different 
t imes with an error bound of, say, ±5 %. It seems also 
necessary to investigate in greater  detai l  the effects of 
the appearance of mult iple cells and of uns ta t ionary  
convection on melting of low Prand t l  substances,  since 
it can be seen on figure 12 tha t  the appearance of 
mult iple cell convection not only great ly influences the 
overall heat  transfer,  and thus the evolution of the 
melted fraction, but  also the shape of the interface. 

A second stage of the exercise is being organized, with 
a final synthesis within the framework of the Conference 
on 'Moving Boundaries 99', to be held in Slovenia in 
June 1999. 
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APPENDIX I 

Description of the algorithm used by: 

Ol iv i e r  B e r t r a n d * ,  l~ric Arquis** 

MASTER,  ENSCPB,  BP 108, 33402 Talence cedex, 
France 

F o r m u l a t i o n  

The unsteady, incompressible, Navier-Stokes equa- 
tions for both  fluid and solid phases ave formulated in 
terms of velocity U(x, t) and pressure p(x, t) as: 

- conservation of momentum: 

= p g -  v p +  v . ( , ( v  v +  v ~  v ) )  - ~ v (1) 

- conservation of mass: 

v .  u = 0 (2) 

We introduce in the Navier-Stokes equations a source 
te rm S = / 3  U where ~ takes the value zero if the  local 
solid fraction is zero or 102° if fs = 1. For this last case, 
the source dominates  all other  terms in the momentum 
equation and force the velocities to values close to zero. 

* b e r t  r a n d @ l m a s t e r  . u - b o r d e a u x .  fr 
** a r q u i s @ l m a s t e r  . u - b o r d e a u x . f r  

The energy equation is formulated in terms of 
t empera tu re  T(x, t) as: 

pCp(~-~+U.VT) =V.()~VT)+PL~t (3) 

where fs is the local solid fraction introduced by Voller 
in his 'New source scheme'. In this case of an isothermal 
phase change (at T = Tf), the local solid fraction is 
given by the Heaviside step function: 

f s = { O  if T>Tf  
1 if T<Tf  

D i s c r e t i s a t i o n  

Time discretisation 

We used a f i rs t -order  implicit  finite-difference scheme 
for the  momentum and energy equations. 

Space discretisation 

The equations are discretised on a fixed Cartesian 
mesh by the finite~volume method.  The hybrid scheme 
(first or second-order  function of the P~clet number) 
is used for both  diffusive and convective terms. The 
Navier Stokes equations are discretised on the usual 
staggered grid. 

A l g o r i t h m  

The augmented Lagrangian 

The discretised Navier-Stokes equations are solved 
by an augmented Lagrangian method  [1] (the Uzawa 
non-lineav algori thm).  This is an i terat ive method 
between the momentum equations and the pressure 
field. The Uzawa algori thm consists of an opt imisat ion 
technique to compute  a velocity-pressure saddle point  
under the incompressibil i ty constraint  V - U  = 0. 

The 'New source scheme' 

The 'New source scheme' [2] is an i terat ive procedure 
between the energy equation and the solid fraction 
update.  On the node points where fs is s t r ic t ly  in the 
interval ]1,0[, we force the  solver to re turn  a value for 
the  t empera tu re  close to the  melting temperature .  After 
that ,  the solid fraction is updated.  

Solu t ion  o f  l i n e a r  s y s t e m s  

The linear systems are solved by a precondit ioned 
(Jacobi) conjugate gradient  method (Bi-CGSTAB) 
which is an i terat ive method.  Convergence is declared 
when the residual error is less than  10 - s  for the 
momentum equation and 10 -15 for the  energy equation. 
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Computational parameters 

A time step of At = 0.01 s and a 80 × 80 uniform 
square grid were used for the case 2. At each time step, 
the arithmetic mean of the absolute values of V - U  at 
each mesh point is less than 10-% 
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APPENDIX II 
An enthalpy-porosity technique 

for the melting problem 
Description of the algorithm used by: 
B r u n o  Binet*,  Marce l  Lacroix** 
D@partement de g6nie m6canique, universit@ de 

Sherbrooke, Sherbrooke, J1K 2R1, Qu6bec, Canada 

Governing Equations 

The mathematical  model rests on the following 
assumptions: 

(1) a two-dimensional analysis is applied; 
(2) viscous dissipation is neglected; 
(3) the flow in the liquid phase is laminar, incom- 

pressible and Newtonian; 
(4) the Boussinesq approximation for buoyancy is 

valid; 
(5) thermophysical properties are constant and uni- 

form; 
(6) volumetric expansion is neglected upon melting; 
(7) a no-slip condition holds at all the walls. 
With the foregoing assumptions, the governing 

equations for the conservation of mass, momentum and 
energy are: 

~---~(pui) = ( I )  0 

~2ui 3p 
~t (pu~) + (P~J~) = ~axjaxj i)x~ + s~ (2) 

~~(Ph) + ~--~j(pujh) = # ~-~-(k ~h~xj )  - (3) 

* bruno.binet @gme.usherb.ca 
** marcel.lacroix@gme.usherb.ca 

1 6  

An enthalpy method is retained for the treatment 
of the melting problem [1-5]. The energy equation 
for the phase change material (PCM) follows Voller's 
formulation [1-3] for which the total enthalpy is split 
into sensible and latent heat components: 

H(T) = h(T) + Lfl  (4) 

where h(T) = c dT (5) 

and fl is the local liquid fraction. Using this formulation, 
the problems associated with the phase change are 
isolated in the source term Sh, i.e.: 

Su = PL ~t  (6) 

The liquid fraction fi is given by the Heaviside step 
function: 

f l = l  if h > 0  

f i = 0  if h < 0  (7) 

The liquid fraction is also used to drive the velocity 
components to zero in the solid phase of the PCM 
via the source terms S~ and Su in the momentum 
equations (2): 

sx = - B ( f , ) u  

S u = - B ( f i ) v  + p g ~ ( T -  Tm) (S) 

The function B becomes very large when fi is zero 
and goes to zero as fi tends to one. A function B based 
on the Carman Koseny relation for a porous medium 
as described in references [1 3] is employed: 

B(I1) - C ( 1  - A )  2 (9)  
f~+~ 

with C = 1.6-106 and s = 10 -3. This numerical artifact 
can be viewed as a way of modelling the transition zone 
between the solid and liquid phases. 

Numerical Procedure 

The finite-difference equations are obtained on 
integrating the conservation equations (1)-(3) over each 
of the control volumes in the (x,y) plane using second- 
order centred differences. The convective terms are 
discretised, however, with a first-order hybrid difference 
scheme [6] in order to insure stability. The convection 
coefficients are obtained from the Rhie and Chow 
interpolation formula [7]. This way, all the equations 
are solved on a non-staggered grid. The SIMPLEC 
algorithm [8] is adopted for the velocity-pressure 
coupling. An implicit Euler scheme is used for the 
time-stepping procedure. The resulting finite-difference 
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equations for the general dependent variable ¢ at node 
P have the form: 

with: 

A p ~ g p  - E n b A n b d P n b  = ( S U ) 4 )  (10) 

Ap = ~'nbAnb --  (SP)~ + pA___~V (11) 
At  

The set of linearised equations (10) is then solved 
iteratively with a line by line TDMA solver by 
sweeping the cavity from left to right. At a given 
time, convergence is declared when the following three 
conditions are met: (1) the dimensionless residual for 
the mass conservation equation is less than 5.10-3; (2) 
the dimensionless residual for the enthalpy conservation 
equation is less than than 4.10-4; and (3) the liquid 
fraction field is stabilised. More stringent convergence 
criteria were retained but the results, obtained after 
significantly longer computational times, did not show 
perceptible changes in the final solution. 

The central feature of the present fixed-grid simu- 
lation technique for the phase change problem is the 
source term Sh for the enthalpy equation. This term 
keeps track of the latent heat evolution and its driving 
element is the liquid fraction ft. This fraction takes a 
value of 1 in fully liquid regions, 0 in fully solid regions 
and lies in the interval [0,1] in the vicinity of the phase 
front. In a numerical implementation, its value is de- 
termined iteratively from the solution of the enthalpy 
equation via the following expressions [1-3]: 

flk+l k At A~ hl  
,p = fi,e +/k p L A V  (12) 

and 

f l  k + l  ,p = 1  if h ~ > 0  

f l k -b l  ,p = 0  if h k < 0  (13) 

where A is an under-relaxation factor. The liquid fraction 
update is applied at every node after the kth solution 
of the linear system for the enthalpy. At a given time 
step, the position of the phase front is obtained from 
the solution of the liquid fraction field by a linear 
interpolation of the contour line where fi = 0.5. 

A constant non-dimensional time step of 2.10 -4 
and a grid size of 40 × 40 uniformly distributed nodes 
were used to carry out the simulation for case # 2. 
A constant non-dimensional time step of 1.25.10 -~ for 
the first 100 steps (and 2.5.10 -~ for the following) and 
a grid size of 50 × 181 uniformly distributed nodes in 
the horizontal and vertical directions respectively were 
employed to perform the simulations for the melting of 
paraffin. Computation times on a IBM RS/6000 model 
375 ranged from 1 to 9.5 h, depending on the simulated 
c a s e .  
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APPENDIX III 

Description of the algorithm used by: 

Herv~ Combeau* 

LSGMM, I~cole des mines de Nancy, Pare de Saurupt, 
54042 Nancy, France 

Model 

These simulations have been performed with a model 
developed for the prediction of macrosegregation [1, 2]. 
This model describes the transport of heat, mass, solute 
and momentum in the case of the solidification of a 
binary alloy. For an alloy, the solidification proceeds 

* combeau@mines, u-nancy, fr 
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with a mushy zone. At the macroscopic scale, the 
thickness of this zone is not negligible and both liquid 
and solid phases are present inside each macroscopic 
volume element of the mushy zone. The conservation 
equations are derived by an averaging technique over 
a volume element, which is small with regard to the 
extent of the mushy zone and large with respect to 
the size of the microstructure of solidification. For the 
application to the re-melting of a pure substance, the 
transport  of solute has been neglected. Assuming that  
the solid phase is fixed, the density of the liquid phase 
is constant except in the buoyancy term, the density of 
the solid phase is equal to the density of the liquid, the 
specific heat of the solid and liquid phases are constant 
and equal, the viscosity is constant, then the complete 
set of equation is: 

heat conservation equation: 

~h 
Pref ~7 + Pref C p  I~ ~7T = div( ,~VT) (1) 

mass conservation equation: 

div(l~) = 0 (2) 

momentum conservation equation for the liquid 
phase: 

gL 
t t ~  

= # & Y  -- g L V p  -- g L - ~ V  -- Pref ~ ( T  - Tre f )  ga  
1% 

(3) 

IP is the superficial velocity of the liquid phase, T the 
temperature, and h the averaged mass enthalpy defined 
as: 

h = C p T  -I- g L L F  (4) 

where C p  is the mass specific heat, gL the volume 
fraction of liquid and LF the latent heat of melting of the 
pure substance. In equation (3), K is the permeability of 
the mushy zone, it accounts principally for the drag force 
of the solid skeleton on the interdendritic liquid. The 
permeability is approximated by the Carman-Kozeny 
relationship: 

-- 22g 3 
K -- 180 (1 - gL) 2 (5) 

,% is the secondary dendrite arm spacing. As can be 
seen, the permeability tends toward infinity when the 
liquid volume fraction becomes unity, thus reducing 
equation (3) to the standard Navier-Stokes equation. At 
an increasing volume fraction of solid, the permeability 
tends toward zero and the drag force of the solid 
skeleton dominates the other contributions appearing 
in equation (3). 

In order to close the set of equations, a supplementary 
relation between T and gL is needed. As this model deals 
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with an alloy, a solidification range has to be defined. 
In the case of a pure substance, this solidification range 
is artificial. The relation which has been used is the 
following: 

if T < T F ,  g L = 0  

if TF <~ T <<. TF  + e,  gL - -  - -  

if T > T F ,  g L = l  

T - T F  
E 

(6) 
where TF is the temperature of melting of the pure 
substance. 

Discretisation method 

A control volume method has been used for the 
discretisation of the conservation equations [1-3]. The 
total flux (convection plus diffusion) on the faces of the 
control volume have been estimated using a power law 
scheme [3]. The SIMPLEC algorithm has been adopted 
to treat the velocity-pressure coupling. A specific 
algorithm is needed to deal with the non-linearity of the 
heat conservation equation. Equation (1) is integrated 
in its natural form, i.e., with two main variables: the 
mass average enthalpy and the temperature. Using 
the nomenclature of the finite volume formulation of 
Patankar [3], the integration of equation (1) in time and 
space over a control volume can be written as: 

0 . t + A t  ,,~t4-At 
apnp  -]- (aE + a w  + aN + a s ) l p  

= aET~+At+ a w T ~ A t + a N T t + A t + a s T ~ + A t + a p h ~  (7) 

The average enthalpy has been chosen as the 
principal variable in equation (6) [1]. Since all transfers 
are coupled, an iterative procedure is used as follows: 
(1) compute h from equation (1); ( 2 ) c o m p u t e  V 
from equation (3); (3) compute p from equation (2) 
and correct the velocity field in order to verify the 
global mass conservation; (4) compute T and gL from 
equation (6). This sequence of operations is repeated 
until convergence is achieved before advancing to the 
next time-step. 

Calculation parameters 

Time-step until 500 s: 0.01 s 
Time step after 500 s: 0.1 s 
)~2 =- 10 -6 m 
Solidification range: e = 0.1 °C 
Number of nodes in X direction: 50 
Number of nodes in Y direction: 50. 
The location of the melting front has been defined as 

the location of the volume fraction of liquid: 0.99. 
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APPENDIX IV 
Description of the algorithm used by: 

Yves  Delannoy* 

EPM/Mady lam 

BP 95, 38402 Saint-Martin-d'H~res cedex, France 
The simulations are performed using FLUENT UNS 

4.2 and user-defined routines. The main features of the 
method are: 

- one-domain approach; 

enthalpy formulation; true unstationary procedure, 
based on the source term method by Voller (in the 
momentum equation, this term is a friction term, similar 
to a porosity); 

implicit time discretisation (order 1, iterative 
convergence at each time-step), second-order space 
discretisation, uncentered convective terms; 

definition of the interface as the 0.5 solid fraction; 
no coordinate transformation; phase change inter- 

val is 1% of the overall AT; 

- autoadaptive triangular grid and non-conform grid 
refinement at the interface and unrefinement behind the 
front (initially 3 300 triangles); 

initialization at T F -  0.001AT; resolution by the 
SIMPLEC algorithm; 

- algebraic matrix multigrid solver; 

run on workstation SUN UltraSparc 170 ( 9 
Specfp95), in about 2 CPU hours. 

APPENDIX V 
A front-tracking method for convective 

melting of pure substances 
Description of the algorithm used by: 

D o m i n i q u e  Gobin** and  Gisele Vieira* 
FAST 

Bgt. 502, campus universitaire, 91405, Orsay cedex, 
Prance 

* delannoy@hmg.inpg.fr 

** gobin@fast.u-psud.fr 
*** gvieira@iis.com.br 

Problem definition and hypotheses 

The coupled problem to be solved is described by the 
set of equations governing natural convection in tile non- 
rectangular liquid domain (Navier--Stokes, energy and 
continuity equations), and by the local energy balance 
equation at the interface. 

The solution procedure uses a front immobilisation 
technique based on the widespread quasi-steady and 
quasi-stationary hypotheses, which allow: 

(1) to solve separately the fluid flow and the interface 
motion, 

(2) to solve the steady state equations of natural 
convection in the melt. 

These assumptions have been shown to be relevant 
in applications concerning high Prandtl  number liquids 
and relatively high Rayleigh numbers (Ra based oil H 
above 10 6) [1]. For high Prandtl  numbers, the thermal 
boundary layers separate very early in the melting 
process and argmnents based on scaling considerations 
show that  the melting front velocity is several orders of 
magnitude smaller than the velocities in the boundary 
layers [2], justifying the first hypothesis. As for 
the second assumption, studies on transient natural 
convection of a fluid in a fixed enclosure [3] show that  
the orders of magnitude of the time scales for natural 
convection to reach steady state are much smaller than 
the time scales of the melting process. 

In the case of liquid metals, tile use of the 
dimensionless group Ra x P r  proposed by Bejan [3] can 
be applied to tile separate boundary layer regime. On 
the other hand, for this range of Prandtl  numbers, the 
time scales for transient natural convection in enclosures 
are not well-known and complex behaviour may be 
expected. 

Under the assumptions mentioned above, the com- 
plete set of equations to be solved is then: 

in the liquid cavity: 

V.__V = 0 (1) 

(v .v)_v  = v~_v-  v P  + a ~ .  0_k (2) 

(_V.V) 0 = ~-~ V~0 (3) 

at tile interface, the energy balance equation: 

. ~c 
V0._n = p ~ (4) 

where c9c10~ (T = F o S t e )  is the local velocity of the 
melting front along _n, the normal vector to the interface. 
Dirichlet thermal boundary conditions are taken on the 
vertical wall and at the interface, and the horizontal 
walls are adiabatic. In the liquid cavity, zero velocity 
dynamic boundary conditions are considered at the four 
walls. 
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Equat ions (1 4) have been set in a dimensionless 
form using the height H of the enclosure as the reference 
length and the kinematic viscosity u in velocity scales. 

Numerical procedure 

Flow f ield ca lcu la t ion  

The system of non-linear equations (1 3) governing 
na tura l  convection in the irregular liquid cavity is 
t ransformed using a classical algebraic non-orthogonal 
t ransformat ion of co-ordinates (see Sparrow et al. [4]). 
The t ransformed equations are discretised on a square 
computa t ional  domain,  using the hybrid differencing 
scheme [5]. The SIMPLE algori thm is used to solve 
the pressure-velocity coupling and the solution of the 
diseretised equations is obta ined with an ADI procedure. 

The co-ordinate t ransformat ion introduces the suc- 
cessive derivatives of the function C(z) up to the third 
order and cross-terms in the calculation of the heat  
fluxes at the surface of the control volumes. All these 
terms are retained and the diseretised conservation 
equation for a given control volume leads to a 9-point 
formulation. In order to take advantage of the ADI pro- 
cedure, a 5-point implicit  formulation has been kept and 
the 4 non-adjacent  points arising from the cross-terms 
are shifted to the r ight-hand side of the equations. A 
detai led descript ion of the discret isat ion technique may 
be found elsewhere [6]. 

The grid defined on the square computa t ional  
domain nmy be irregularly spaced, in order to provide 
be t te r  resolution of the velocity and t empera tu re  
gradients  at the solid walls. The 60 x 42 grid used 
in our computat ions  has a sinusoidal dis t r ibut ion 
in the horizontal  x-direction and a regularly spaced 
dis t r ibut ion in the vertical z-direction. 

I n te r face  m o t i o n  

When the tempera ture  and flow fields converge in the 
liquid domain,  the local heat  transfer at  the interface 
is calculated at the grid points and interpolated at 100 
equally-spaced z-posit ions using a cubic spline. As the 
cold wall is considered to be at the fusion temperature ,  
and the solid phase is isothermal,  the melting front 
movement is explici t ly calculated from the local heat 
transfer  at the interface, which is assumed to be constant  
during the calculation of the new melting front position. 
Smaller t ime steps are considered at the beginning of 
the process to make sure tha t  the quasi -s ta t ionary 
hypothesis  does not artificially increase the melting 
front velocity. The new liquid cavity is defined at  the 
100 equally-spaced nodes: the interface posi t ion C(z) at 
the grid points and the nodal  values of the successive 
derivatives of C(z) required for the calculation of the 
t ransformat ion coefficients are obtained from cubic 
spline interpolation.  

In i t i a l i sa t ion  

The init ial isat ion of the process uses the classical 
Neumann solution of the 1D Stefan problem where 
pure conduction is considered to be the only heat  
transfer mode. This solution is relevant as far as natura l  
convection has not developed in the melt,  and the heat  
transfer  dis t r ibut ion at  the interface is uniform. For 
a given height of the enclosure and a given Rayleigh 
number,  this solution may be used up to a maximum 
width 6 of the liquid cavity. In the absence of a criterion 
to determine this value, we performed a number of 
numerical calculations in rectangular  enclosures, for 
a given Rail and different aspect  ratios. We found 
tha t  the heat  transfer was still very close to the pure 
conduction solution in a cavity of aspect  rat io H /5  = 8 
for Rail ~ 105 , and H/5 = 12.5 for Rai l  ~ 10 ° . The 
calculation is then initialised with a rectangular  cavity 
of width ~ and the corresponding t ime is given by the 
Neumann solution. 

The nmnerical results presented below have been 
obtained on a HP-735 computer.  Typical  values of the 
fusion t ime step 5~-F increase from about  10 .3  at the 
beginning of the process to about  10 .2 in the convection 
regime. 
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An Eulerian-Lagrangian method 

for the melting problem 

Description of the algori thm used by: 
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Problem Statement 

The dimensionless conservation equations for mass, 
momentum, and energy are formulated in terms of the 
stream function ga, vorticity w and temperature O. The 
resulting transport  equations for the flow property ¢ 
take the following form in Cartesian co-ordinates: 

a--T- aTx ~ ¢ -  aTx) + gv ~¢-  ~ )  = S(xm) 
O) 

S(x,y) is a source term, F is an exchange coefficient, and 
p is a constant. The variable ¢ and its corresponding 
parameters are given explicitly in table I. The velocity 
components u and v in the liquid phase of the PCM are 
given by: 

a ¢  a ¢  
= ~ ' ~ -  a~ (2) 

The vorticity is defined as usual as: 

3v 3u 
_ (3) 3z ay 

In addition, an energy balance for the solid- 
liquid PCM interface yields the following dimensionless 
condition for the moving boundary: 

P 
-VO.~  = 2 g g ' "  (4) 

where Vn is the dimensionless local normal interface 
velocity and VO. g is the local normal heat flux to the 
solid liquid interface. 

Numerical Procedure 

As melting progresses, the moving solid liquid 
interface becomes distorted. As a result, its curvilinear 
shape will not, in general, coincide with the grid nodes 
on a rectangular Cartesian mesh. To overcome this 
problem, the general conservation equation equation (1) 
and its boundary conditions are transformed from 
the original Cartesian grid (x,y) to a curvilinear grid 
({,r/). The resulting conservation equations are slightly 
more complicated, but their boundary conditions are 
specified on straight boundaries, and the computational 
grid is rectangular and uniformly spaced. Adopting 
this technique [1--3], equation (1) becomes in the 
transformed co-ordinate system: 

O(p0) + 1 ape [Ox ay Oy Ox] 

[ 0Dl +Tg~ (u¢)- 7 

[ ( 1 O V a¢ _ g~_  = S(Gr/) (5) +2~ (v¢)-7 -r~ 

The geometric factors U, V, a, g, 7 and the Jacobian 
J of the transformation are defined as follows : 

bO b¢ j _  ~}xby Oxby 

7 = 
(ax) 
ag +\aT/ 

The source term S(Gr/) for the vorticity equation 
(table 1) becomes: 

RaPt [ ~y ~O ~y ~O 1 S(~,~) - j ~ 3~ 3~ ~ (6) 

The Stefan condition, equation (4), is now rewritten 
as: 

1 3y 00 p* ds(y,t) 
- - -  (7) 

J 3r13~ Ste dt 

where s(t,y) represents the time-dependent position of 
the solid liquid interface. The finite-difference equa- 
tions are obtained on integrating the general governing 
equation, equation (5), over each of the control volumes 
in the (Gr/) plane. The resulting finite difference scheme 
has the form: 

ASWCsw + ASOs + ASEOsE + APOP 

+AECE + ANWCNw + ANON + ANECNE -- Q = 0 (8) 

Expressions for the coefficients in equation (8) may 
be found in [3]. The terms arising from the non- 
orthogonality of the grid appear in the coefficients of the 
crossed terlns ASW, ASE, ANW, and ANE. Q contains 
the source term S and the value Cp from the previous 
tinle-step. The advection-diffnsion part of coefficients 
AS, AW, AP, AE and AN is modified for stability 
according to the power law scheme of Patankar [4]. 
The finearised equations are solved iteratively for 0, w 
and ,b using a line-by-line tridiagonal matrix algorithm. 
Convergence is declared, at a given time step, when 
the largest residual for all difference equations, i.e., 
the left hand side of equation (8), is smaller than 
(¢ is a small number of the order of 10-3). Its magnitude 
depends on the equation and the problem to be solved 
(Rayleigh number, grid size and time-step). For the 
cases presented here, c was chosen so that  the solutions 
obtained with more stringent convergence criteria did 
not reveal perceptible changes. 

The numerical solution proceeds through a se- 
ries of small time intervals during which the solid 
liquid interface is assumed to be fixed. For each such 
time interval, the field equations are solved implicitly 
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(retaining the unsteady terms in equation (5) in the now- 
fixed computational domain. The solution of the field 
equations provides the energy fluxes at the interface 
after that  time interval. The horizontal displacement 
of the interface can then be calculated explicitly 
from equation (7), and a new computational grid is 
generated for the next time step. The grid is generated 
algebraically using a power law clustering function that  
concentrates grid nodes in the vicinity of the wall-PCM 
interface and in the vicinity of the phase front [1]. 

A constant non-dimensional time step of 2.10 -4 and 
a grid size of 21 × 25 non-uniformly distributed nodes in 
the horizontal and vertical directions respectively were 
used to carry out the simulations for the melting of the 
metal. A constant non-dimensional time-step of 2-10 -5 
and a grid size of 25 x 35 non-uniformly distributed 
nodes were employed to perform the simulations for the 
melting of n-octadecane. 
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A P P E N D I X  V I I  

D e s c r i p t i o n  o f  t h e  a l g o r i t h m  u s e d  by: 

Pa t r i ck  Le Qu6r~* 

Limsi, BP 133, 91403 Orsay cedex, France 

Formula t ion  of  the equa t ions  

The Navier-Stokes equations are written in velocity- 
pressure formulation, and the enthalpy form of the 
energy equation is used. These equations are written on 
a domain ~2 which expands in time in the horizontal 

* plq(qlimsi.fr 

direction, i.e., ~2 = [0,XR(t)] × [0,1]. The position of the 
right boundary Xa(t)  is assumed to vary linearly in time 
XR(t)  = Xr t (0 )+  wt. The equations in dimensionless 
form read: 

0v  
O--[ + v V . w  + V ( v -  w ) v  

P r  ~7 2 = - V P  + R ~ i ~  v + P r k O i n f 2  (1) 

V . v = 0 i n ~ 2  (2) 

Oh 1 
O~ ÷ h V . w  ÷ V ( v -  w) h - Ral/2'~7.AVOin /2 (3) 

where v is the absolute velocity in the moving frame, 
h the enthalpy and O the temperature. Tile reference 

t~f 1 /2  quantities are H for lengths and ~ R ~  for velocity 

and related scales for time and pressure where ~f 

is the fluid thermal diffusivity = ( p ~ ) f  . The 

T -  Tf dimensionless temperature O is defined as ~ and 

the reference enthalpy difference is (flCp)f (Th --Tf). h 
is the dimensionless enthalpy, which is a discontinuous 
function of the temperature. It is approximated by the 
following function/~: 

h = ( S ~ O r  + 1 )  0 for O < ~ < O r  (4) 

1 
h - - - - ~ + O  for O r < O < 1  (5) 

where Or is a prescribed (small) regularisation temper- 
ature, h is continuous and piecewise linear. 

Discret isat ion  

Time discretisation 

The time discretisation combines an implicit treat- 
ment of the viscous or diffusive terms with an explicit 
discretisation for the convective terms. The source term 
corresponding to the expanding mesh is treated im- 
plicitely. Applied to a scalar equation of the form: 

0 f  1 V2 f (6) O--[ + f V . w  ÷ X Y ( v -  w ) f  -- Ral/2 

the fully time discretised formulation is: 

3fn+l _ 4 fn  ÷ fn--1 
2 /kt ÷ f n + l v . y g  ÷ 2 V ( v -  w ) f  n+l 

1 v 2 f n + l  - -V (V- -  w ) f  n = Raa/2 (7) 

where n stands for the time index. This results in a 
Helmholtz equation for f"+*: 

1 2 3 V - w )  fn+l  = S f , n - - 1  (8) 
(R----~ 5V 2At  
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Space discretisation 

The equations are discretised on a uniform mesh 
in both  directions using the usual s taggered grid 
arrangement .  Second-order  centred discretisat ions are 
used for the diffusive and convective terms. 

Solution of linear systems 

The resulting linear system is solved using either an 
ADI or a GMRES type  solver. 

I t  is convenient to define a phase indicator  which 
is set to 1 when O > O~ and to 0 otherwise. Cells 
character ised by phase values of 1 and 0 are liquid and 
solid respectively. 

For both  velocity components,  the  above procedure 
readily applies except tha t  the  linear system is modified 
so tha t  the  velocities resulting from the inversion are 
zero in the  solid or at the  boundaries  between solid and 
fluid cells. 

The enthalpy equation is solved over all $2. In 
this case the dummy variable f in (6) s tands for 
(p Cp)f(O)O. The discrete equations resulting from the 
t ime and space discret isat ions form a nonlinear system 
for the tempera tures  On? -~ due to the  fact tha t  the ZJ 

equivalent thermal  capacity, defined as ~- (cf. equations 
(4) and (5)), depends on the temperature .  This non- 
linear system is solved i terat ively (i.e., its coefficients 
are upda ted  at  each i terat ion) using overrelaxation until  
a prescribed accuracy is met.  

Incompressibility constraint 

The incompressibil i ty constraint  is mainta ined 
through a predic t ion-projec t ion  algorithm. In the pre- 
diction step, bo th  velocity components  are solved inde- 
pendently,  using P~ in the source term. The resulting 
velocity field I/* is then projected onto the subspace 
of divergence free vector fields using the Helmholtz 
decomposit ion:  

Y ~+1 - V*  = A t  V ¢  (9) 

which can be done by computing:  

V 2 ¢ _  V.V* 
At (10) 

with homogeneous Neuman boundary  conditions. The 
phase indicator  can be used to impose this condit ion 
exact ly  at  the fluid solid interface. This elliptic equation 
is solved using a mult igrid algori thm, in which the phase 
indicators and linear operators  on the coarser grids are 
defined recursively from those on the finer grid. 

Algorithm 

- beginning of t ime- s t ep  

- c o m p u t e  new grid posit ions and geometrical  
quanti t ies 

- solve for the new tempera tu re  field O T M  

update  phase indicator  
compute  the intermediate  velocities V* using O ~+ ~ 

in the buoyancy force 
- compute its divergence V-1/* 

solve for the pressure correction ¢ 
- upda te  velocities and pressure (c.f 9): 

V "+~ = V * + A t V ¢  
3 

- ex t rapola te  new tempera tu re  and thermal  capaci ty  
end of t ime step. 

Determination of the front position 

As said above, all cells whose t empera tu re  is larger 
than  O~ are considered as liquid, and the surface of these 
cells is defined as the melt  fraction. The posit ion of the 
interface is defined at the location between a liquid and 
a solid cell. O~ was generally chosen as 0.001. 

Computational parameters 

Most of the computat ions  were performed with 

At  = 0.01 in units of H-Rail 1/2. The computat ions  

for the paraffin were done using a spatial  resolution 
128x 128 or 192x 192, those for the metal  with 
128 x 192. For the paraffin the right boundary  was 
prescribed to move from 0.1 to 0.8 over the t imelength 
t4, and from 0.2 to 0.6 for the metal.  

APPENDIX VIII 
Description of the algorithm used by: 

M a r c  M~dale* 
Iusti ,  UMR CNRS 6595, Technopole de Chateau-  

Gombert ,  13453 Marseille cedex 13, France 

The method uses a finite-element technique with a 
one-domain approach and an Eulerian descript ion (fixed 
grid, eventually complex and unstructured) .  

The energy equation is wri t ten  in the enthalpy form 
and the latent  heat  contr ibut ion appears  as a source 
term (Voller and Prakash).  This model  is par t icular ly  
well sui ted to non-isothermal  phase change processes. 
The t empera tu re -en tha lpy  relation is piecewise linear. 
The flow model uses a primit ive variables formulation 
with a quadrat ic  approximat ion for the velocity and 
a linear approximat ion for pressure (discontinuous by 
elements). 

medale@iusti.univ-mrs, fr 
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Space discretisation is the same for the two cases con- 
sidered in this preliminary approach 40 x 40 elements, 
that  is 81 × 81 calculation nodes, while the dimension- 
less time step 0.001 for case # 1 and 0.0001 for case # 
2. 

The determination of the front position is made 
through the solid fraction, which depends linearly on 
temperature. The phase change interval is 0.001, in 
order to simulate the isothermal melting process. 

The linear system of equations is solved using an 
unstationary decoupled approach, which consists of 
sequentially solving, at each time-step, the energy 
equation using the latest available velocity field, and 
then the flow problem using the latest temperature 
field. We thus can use different techniques to solve the 
energy equation and the Navier Stokes equations. For 
a sequential execution of the code on a monoprocessor, 
the direct resolution of the linear algebraic systems is 
faster. The parallel execution on a multiprocessor uses 
a different solution method for each system: 

energy equation: a BCGS iterative method BCGS 
(bi-conjugate gradient squared) preconditionned by an 
ASM (additive Schwartz method). 

- incompressible Navier-Stokes equations: iterative 
BCGS method, preconditionned by the SSOR (symmet- 
ric successive over-relaxation) method. 

APPENDIX IX 

Description of the algorithm used by: 

J u r e  Mencinger*,  Bo~,idar Sarler  

LFDT 

University of Ljubljana, A~ker~eva 6, 1000 Ljubljana, 
Slovenia 

Formulation of the equations 

The continuum model [1] is used for the calculation 
of the unknown fields. It is assumed that  the liquid 
fraction fl varies with the temperature t9 as: 

0, 
f l =  O / A e ,  A o > e > 0 .  

1, t ~ > A o  
(1) 

A e  is the prescribed melting interval (set to 10-3). 
The velocity field is determined through the mixture 

* j ure.mencinger@fs.uni-lj .si 
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momentum conservation equation with solid phase 
velocity set to zero (vs = 0): 
av 

~F--'~ + V . ( w )  = - V p  + P r V 2 v +  P r R a f i  ~ j  

- V .  ( v ( v l  - v)) - 7(1 - f i ) v  (2) 

where v and p stand for non-dimensional mixture 
velocity and pressure, respectively. The last term insures 
zero velocity of solid phase (~ is set to 109 in the 
calculation). 

The mixture energy conservation equation is written 
in the enthalpy form: 

a h  = v2h- - t V2/l- t v.(v(h,- h)) (3) 
aFo 

The temperature field is calculated from the enthalpy 
field by inverting the relation: 

/ l  
h = O + St---~ (4) 

Discretisation 

Space discretisation 
The equations are discretised using standard control 

volume (CV) method as proposed by Patankar [2]. The 
grid used for this calculation was non-uniform with CV 
faces located midway between the grid points. For the 
calculation 100 x 80 internal grid points were used. Grid 
spacing is described by the relations: 

dx~+l = c~= dxi and dyj+l = ~= dyj (5) 

with dx, and dyj representing the dimensions of 
the (i,j)-th control volume. The parameter a takes 
values: a= = 1.0414 for 0.0 ~ x ~ 0.3, a= = 1.00 
for 0.3 < x ~ 1.0, ay = 1.02 for 0.0 ~< x ~ 0.5 and 
ay = 0.98 for 0.5 < x ~ 1.0. A standard staggered grid 
was used for the calculation of the velocity field. An 
upwind scheme was used for the convection terms. 

Time discretisation 
The simple first-order Euler implicit scheme is used 

for obtaining the values at each time-step. The resulting 
system of algebraic equation is solved iteratively with 
the alternating direction tridiagonal matrix algorithm 
(TDMA). 

Algorithm 
Algorithm can briefly be described by the following 

steps: 
(1) initialisation: t = 0, u = 0, h = 0, @ = 0, fl = 0 
(2) beginning of the time-step: t = t + At 
(3) solve the equation for the velocity field (with 

SIMPLER) 
(4) solve the equation for the enthalpy field 
(5) calculate temperature field 6~ 
(6) calculate liquid fraction field fl 



Melting driven by natural convection 

(7) if  the  solution for the  t ime-s t ep  has converged 
goto step 2 else goto step 3. 

The convergence at  the t ime-s tep  is determined by 
the criterion: 

max (¢~,+1 _ ~n±l]  r%j / %) 
(¢nA_l] i1 __~ etimestep (6) 

(¢~+1] _ min ~ ~,3 J l maxi,j \ r i , j  ] i,j 

where ¢~+~ is the  mat r ix  representing the values of the 
newly calculated field (u, v or h) and ~ + 1  the field from 
the previous  i teration. The value of ~'timestep was set to 
10-% The t ime-s tep  size used was 10 -6 (t = Ste Fo). 
All further details are e labora ted  in [3]. 

Determinat ion of  the f ront  position 

The posit ion of the  solid-liquid interface is assumed 
to be the curve where fl = 0.5. I t  is determined by the 
linear interpolat ion of the  fl field. 
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A P P E N D I X  X 

D e s c r i p t i o n  o f  t h e  a l g o r i t h m  u s e d  by:  

St@phane C o u t u r i e r  a n d  H a m o u  Sada t*  

LET UMR CNRS 6608, Ensma,  86960 Fhturoscope 
cedex, France 

F o r m u l a t i o n  o f  t h e  e q u a t i o n s  

In a solid undergoing a solid-to-liquid phase t rans-  
formation, the conservation of energy can be wri t ten  in 
terms of the  enthalpy h as: 

Oh 1 
~-7 + V-(uh)  -- Ral/2 V20 (1) 

where u is the velocity, h the  enthalpy and 0 ---- 
(T - TF)/(TH -- TF) the t empera tu re  in a dimensionless 

* sadat@let.ensma.fr 

form. The reference quanti t ies  are the cavity height 
H, aRal /2 /H for velocity and related scales for t ime 
and pressure where a is the thermal  diffusivity. The 
reference enthalpy is p c (TH --TF),  h is defined as: 

h = O +  g (2) 
Ste 

where g is the the  volume fraction of liquid (g = 1 for 
0 > 0 and g = 0 for 0 = 0). 

In addit ion,  using the Boussinesq approximation,  the 
momentum and continuity equations tha t  govern the 
laminar  flow in the liquid phase can be wri t ten as: 

~u Pr  2 u 
~-~ + u . V u  -- R - - - ~ V  -t- Vp - S = 0 (3) 

v .  u = 0 (4) 

where p is the pressure and S is a source te rm which 
takes the form: 

S = - C ( 1  - g)u + Pr~g~O (5) 

where C is the constant  set to a large value (e.g., 
1 010) and g is the acceleration due to the gravity. W i t h  
the source term S and the formulation of the  energy 
equation in terms of enthalpy, the governing equations 
are solved all over the domain without  t racking the 
phase front. 

D i s c r e t i s a t i o n  

Time discretisation 

An implicit  t ime discret isat ion is used with a constant  
t ime-step.  The implicit  discret isat ion of the  energy 
equation involves a en tha lpy- t empera tu re  relat ionship 
[1] to represent the  non-l ineari ty associated with 
the latent  heat.  The enthalpy is upda ted  from the 
current t empera tu re  field via  a t runca ted  Taylor series 
expansion, 

h °÷~  = h ~ + ~ (0  ~+~ - 0 ~ )  (6)  
n 

where the  subscript  (n + 1) refers to the i terat ion level. 
dh/dO is determined with the  h -  0 curve which is related 
to equation (2). Note tha t  at  discontinuities in the h - 0 
curve, the slope dh/d# can be accurately approximated  
using an arbi t rar i ly  large value (e.g., 10s). The t ime 
discret isat ion of the energy equation is wri t ten as: 

hn+ 1 _ h t 
At + V . ( u ~ + l h  ~+1) - 1 V20~+1 Ral/2 (7) 

Finally, taking into account equations (6) and (7), 
we obtain:  

1 ) 
d-O ~ At  Ral/2 ~ on~-i 

n 

-- A t  at ~ [ u n + l  ( h t -  [~- -~]n0n) ]  (8) 
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After the solution of equation (8), the (n+  1) enthalpy 
field is updated using equation (6). The local liquid 
fraction g is calculated from equation (2) with an 
over/undershoot correction that  bounds gn+l between 
0 and 1. 

Space discretisation 

The linear algebraic equations are obtained using the 
diffuse approximation method [2, 3], a new numerical 
method for solving partial differential equations. This 
technique only requires sets of discretisation nodes. The 
equations are discretised on a uniformly spaced grid 
N x N in the solid phase and a mesh equivalent to a 
2N x 2N grid points in the liquid phase. The evolution 
of the mesh results of the evolution of the phase front: 
a remeshing occurs when the the liquid zone increases. 

Solution of linear systems 

The resulting linear systems are solved using the 
bi-conjugated gradient algorithm. The enthalpy, the 
momentum and the continuity equations are solved over 
all the computational domain. The continuity equation 
is replaced by a Poisson equation: this feature will be 
presented with the next part. 

Incompressibility constraint 

A projection method [4] is used for solving the mo- 
mentum and continuity equations. Velocity and pressure 
are uncoupled and the equations are solved one after the 
other. The velocity field is determined by first calculat- 
ing intermediate velocity values based on an estimated 
pressure distribution and then obtaining appropriate 
corrections to satisfy the continuity equation. First, 
equation (3) is linearised: 

u *  - u t P r  
A-------~ + u ~ ' V u *  -- Ral/-----TVu* + Vpn - S'~ = 0 (9) 

where the subscript n indicates values known from the 
previous time step, t represents the previous time-step. 
We enforce continuity by writing: 

V 2 p ,  _ Vu* 
At (10) 

Equation (10) is the Poisson equation for the pres- 
sure correction with homogeneous Neumann boundary 
conditions. Once the pressure correction p' has been 
determined, the corresponding velocity corrections are 
computed: 

u' = - A t  V p '  (11) 
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Then, 
U n + l  ~ - -  U* ~- U t 

pn+l  = pn + p ,  (12) 

Algorithm 

(1) At the beginning of each t ime-step (t + At), 
[]~ = lit for scalar and velocity fields. 

(2) Initial scalar and velocity fields are defined, []% 
(3) The momentum equations are solved to update 

the provisional velocity field, equation (9). 
(4) The pressure correction equation is solved equa- 

tion (10). 

(5) The velocity corrections are calculated, equa- 
tion (11). 

(6) The pressure and velocity fields are updated, 
equation (12). 

(7) The energy equation is solved equation (8), 
enthalpy and liquid fraction are updated. 

(8) Steps 2-7 are repeated until convergence. 
(9) Increment time step. 

Determination of the phase front 

If g = 1, the grid point is considered as liquid and 
the interface is defined at the location between a liquid 
and a solid grid point (g = 0). 

Computational parameters 

The computations were performed with a dimension- 
less time-step At ---- 0.5 for cases 1-2 and At ---- 0.05 for 
case 3, respectively. Concerning the grid points, N = 61 
for cases 1 and 3 and N = 101 for the second case. The 
discretisation space N × N is used in the solid phase, in 
the liquid phase the mesh size is equivalent to a spatial 
resolution 2N x 2N. 
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